Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thin film thickness measurements using Scanning White Light Interferometry

Identifieur interne : 000011 ( Main/Repository ); précédent : 000010; suivant : 000012

Thin film thickness measurements using Scanning White Light Interferometry

Auteurs : RBID : Pascal:14-0084388

Descripteurs français

English descriptors

Abstract

Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb2O5 and ZrO2), a metal-nitride (SiNx:H), a carbon-nitride (SiCxNy:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084388

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thin film thickness measurements using Scanning White Light Interferometry</title>
<author>
<name sortKey="Maniscalco, B" uniqKey="Maniscalco B">B. Maniscalco</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Renewable Energy Systems Technology, (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University</s1>
<s2>Leicestershire LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Leicestershire LE11 3TU</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaminski, P M" uniqKey="Kaminski P">P. M. Kaminski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Renewable Energy Systems Technology, (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University</s1>
<s2>Leicestershire LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Leicestershire LE11 3TU</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Walls, J M" uniqKey="Walls J">J. M. Walls</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Renewable Energy Systems Technology, (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University</s1>
<s2>Leicestershire LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Leicestershire LE11 3TU</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084388</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084388 INIST</idno>
<idno type="RBID">Pascal:14-0084388</idno>
<idno type="wicri:Area/Main/Corpus">000093</idno>
<idno type="wicri:Area/Main/Repository">000011</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon</term>
<term>Display devices</term>
<term>Indium oxide</term>
<term>Interferometry</term>
<term>Layer thickness</term>
<term>Metrology</term>
<term>Nitrides</term>
<term>Optical coatings</term>
<term>Photovoltaic cell</term>
<term>Roughness</term>
<term>Semiconductor coating</term>
<term>Semiconductor devices</term>
<term>Spectroscopic ellipsometry</term>
<term>Thickness measurement</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Transparent thin film</term>
<term>Tridimensional image</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche mince</term>
<term>Epaisseur couche</term>
<term>Mesure épaisseur</term>
<term>Interférométrie</term>
<term>Rugosité</term>
<term>Image tridimensionnelle</term>
<term>Couche mince transparente</term>
<term>Revêtement optique</term>
<term>Revêtement semiconducteur</term>
<term>Dispositif affichage</term>
<term>Dispositif semiconducteur</term>
<term>Dispositif photovoltaïque</term>
<term>Nitrure</term>
<term>Carbone</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Ellipsométrie spectroscopique</term>
<term>Métrologie</term>
<term>Nb2O5</term>
<term>ZrO2</term>
<term>6855J</term>
<term>4279W</term>
<term>8460J</term>
<term>0760F</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Carbone</term>
<term>Métrologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb
<sub>2</sub>
O
<sub>5</sub>
and ZrO
<sub>2</sub>
), a metal-nitride (SiN
<sub>x</sub>
:H), a carbon-nitride (SiC
<sub>x</sub>
Ny:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>550</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thin film thickness measurements using Scanning White Light Interferometry</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MANISCALCO (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KAMINSKI (P. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WALLS (J. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Centre for Renewable Energy Systems Technology, (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University</s1>
<s2>Leicestershire LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>10-16</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786170020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084388</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb
<sub>2</sub>
O
<sub>5</sub>
and ZrO
<sub>2</sub>
), a metal-nitride (SiN
<sub>x</sub>
:H), a carbon-nitride (SiC
<sub>x</sub>
Ny:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B79W</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B00G60F</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mesure épaisseur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thickness measurement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Interférométrie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Interferometry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Image tridimensionnelle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tridimensional image</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Imagen tridimensional</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Couche mince transparente</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Transparent thin film</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Película transparente</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Revêtement optique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Optical coatings</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Revêtement semiconducteur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Semiconductor coating</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Revestimiento semiconductor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dispositif affichage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Display devices</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dispositif semiconducteur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor devices</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nitrure</s0>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nitrides</s0>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Ellipsométrie spectroscopique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Spectroscopic ellipsometry</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Elipsometría espectroscópica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Métrologie</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Metrology</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Nb2O5</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>ZrO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>4279W</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>0760F</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0084388
   |texte=   Thin film thickness measurements using Scanning White Light Interferometry
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024